

DEPARTMENT OF THE NAVY

NORTHERN DIVISION

NAVAL FACILITIES ENGINEERING COMMAND

10 INDUSTRIAL HIGHWAY

MAIL STOP, #82 LESTER, PA 19113-2090 N62661 AR 000955 NAVSTA NEWPORT RI 5090 3a

IN REPLY REFER TO

5090 Code 1823/JS

DEC 9 2 1997

Kymberlee Keckler U.S.EPA Region 1 John F. Kennedy Building Boston, MA 02203-0001

Paul Kulpa
Rhode Island Department of Environmental Management
Division of Site Remediation
21 Promenade Street
Providence, RI, 02908-5767

SUBJECT: RELATIVE RISK RANKING FOR NETC NEWPORT IR PROGRAM

Enclosed are the relative risk evaluation worksheets for the Installation Restoration (IR) sites at the Naval Education Training Center, Newport Rhode Island. The enclosures are provided for your review and comment. Comments are requested within 30 days from the receipt of this letter. If requested a conference call will be scheduled prior to submission of your comments. The Navy will revise the worksheets upon receipt of your comments and resubmit them for your final review. Subsequent to your review, the worksheets will be included in the Site Management Plan for NETC Newport.

Please contact me at (610) 595-0567 if you have any questions regarding the enclosed information.

Sincerely,

JAMES SHAFER

Remedial Project Manager

By direction of the Commanding Officer

Copy to:
NETC/Peter Palmerino
Brown & Root/Betsy Horne
ERICD/Mary Philcox

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 11/17/97
Location (State): RI	Media Evaluated (GW, SW, Sediment, Soil): GW SEDEM SOIL
Site (Name/RMIS ID) / Project for FUDS: SITE 00001	Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage): CERCLA RI/FS
RMIS Site Type: LANDFILL	Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N): No Site Rank: High
(Include only key elements of information use	SITE SUMMARY ed to conduct the relative risk site evaluation. Attach map view of site if desired.)
Brief Site Description (Include site type, materials disposed of, dates of operation, Site I is an 11 acre landfill which was operated from 1955 until the mid 1970's The Is operational areas (machine shops) to family housing (domestic refuse) to ships homep PCB transform oil, and construction/domestic debris A waste incinerator operated be on-site	andfill received wastes generated at the base which included
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Groundwater, soil and sediments are of potential concern Currently installation of a R	CRA subtitle C cap will eliminate direct contact to soils
Brief Description of Receptors (Human and Ecological): Receptors include both human and ecological	

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req (or RFA) phase that has not been entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

			Ground	Water		
CONTAMINAI HAZARD FACTOR (1) (CHF)	NT	Contaminant Arsenic (cancer endpoint) Manganese and compounds Calcium Aluminum Lead Cobalt Cadmium and compounds Vanadium Zinc Aroclor-1254	Maximum Conc. ug/L. 311 0 12 000 0 162 000 0 284,000 0 19 8 737 0 57 1 432 0 12,100 0 0 76	Standard ug/I. 4 5 180 0 11 000 0 37,000 0 4 0 180 0 180 0 180 0 11,000 0 0 73	Ratio (2) 69 110 66 670 14 730 7 680 4 950 4 090 3 170 1 660 1 100 1 040	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION PATHWAY FACT OR (MPF)	Evident - Potential -	(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Stand Note Only top ten contaminants are display Analytical data or observable evidence indic contamination in the media is moving away Possibility for contamination to be present at to a point of exposure, or information is not to to make a determination of Evident or Confi	rates that Confinitrom the source	ned - Information indicates that the potent contaminant migration from the sour geological structures or physical con	rce is limited (due to	(Place an "X" next to one below) Evident: Potential: X
	Brief Rationali ver tidal flushi	e for Selection Contaminants found in the gring still appears to be a possible migration route	roundwater appear to be filtered by w	geological conditions, howe -		Confined:
RECEPTOR ACTOR RF)	Identified - Potential -	There is a threatened or potentially threatened downgradient of the source. The GW (cont. of drinking water source or is equiv. to (Class I of the source. The groundwater is potentially irrigation or agriculture, but not presently use.	or not) is a current or IIA aquifer) ly well downgradient usable for DW,	ted - There is no potentially threatened wa the source The groundwater is not co DW or is of limited benificial use (III	onsidered a potential source of	(Place an "X" next to one below) Identified: Potential: Limited: X
	Brief Rationale water due to pr	for Selection Classification of groundwater roximity to salt water and use as a landfill		ered suitable as drinking -		
ctivity Name <u>I</u>	NEWPORT RI	NETC	Site Name: SITE 00001	G	roundwater Category: (High, Medium, Low)	Med

`

			Sediment Ec	o Marine		
CONTAMINAN IAZARD IACTOR (1)	rī.	Contaminant Chromium VI and compounds	Maximum Conc. mg/Kg 67 0	Standard mg/kg 8 0	Ratio (2) 8 380	
CIIF)		Copper and compounds Lead	19 0 49 6	7 0 35 0	2 710 1 420	(Place an "X" next to one below)
		Mercury Nickel and compounds	0 15 23 1	0 15 30 0	1 000 0 770	Significant (If Total > 100):
						Moderate (If Total 2 - 100):
						Minimal (If Total < 2):
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed		Total:	14.276	•
GRATION TIWAY TOR F)	Evident -	Analytical data or observable evidence indicates contamination in the media is present at, is move toward, or has moved to a point of exposure	s that Confin Ing	ed - Information indicates a low poter potential point of exposure (could of geological structures or or phy	d be due to the presence	(Place an "X" next to one below) Evident: X
•	Potential -	Possibility for contamination to be present at or to a point of exposure, or information is not suff to make a determination of Evident or Confined	Potential: Confined:			
	Brief Rationale	e for Selection	evels in sediments in the bay adja	cent to the site		•
EPTOR FOR	Identified -	Receptors identified that have access to sedimen	Limite	ed - Little or no potential for receptors	to have access to sediment	(Place an "X" next to one below)
1	Potential -	Potential for receptors to have access to sediment				Potential: Limited:
Į	Brief Rationale	for Selection Ecological receptors have been in	lentified			
ity Name N	NEWPORT RI I	NETC S	ite Name: SITE 00001	Sec	diment Marine Category:	High

		-	So	oil .				
ONTAMINA	NT		Maximum Conc.	Standard		7		
AZARD ACTOR (1)		Contaminant	mg/Kg	mg/kg	Ratio (2)			
CHF)		Lead	1 980 0	400 0	4 950	7		
,		Benzo[a]pyrene	27 0	61	4 430	(Place an "X" next to one below)		
		Antimony and compounds	914	310	2 950	7		
	·	Copper and compounds	6 070 0	2,800 0	2 170	Significant (If Total > 100):		
		Calcium	45,500 0	23,000 0	I 980	7 · · · · · · · · · · · · · · · · · · ·		
		Manganese and compounds	678 0	380 0	1 780	Moderate (If Total 2 - 100):		
		Chrysene	33 0	24 0	1 380			
		Arsenic (cancer endpoint)	24 1	22 0	1 100	Minimal (If Total < 2):		
		Zinc	19 200 0	23,000 0	0 830	7 · · · · · · · · -		
		Benz[a]anthracene	43 0	610	0 700	7		
		(1) Evaluate for human contaminants only		ļ		7		
		(2) Ratio = Maximum Concentration/Stand		Total:	26.732	-		
		Note Only top ten contaminants are display	aro	Ĺ		j		
					•	1		
GRATION FHWAY	Evident -	(Płace an "X" next to one below)						
TOR		contamination is present at, is moving towards, or has or migrate to a point of exposure						
PF)		Evident:						
	Potential -							
		Potential:						
		to a point of exposure, or information is not to make a determination of Evident or Confi	ned					
						Confined: X		
	Brief Rational exposure	e for Selection Due to the placement of a RC	CRA subtitle C Cap- there will be a	low to none possibility for -				
						(Place an "X" next to one below)		
CEPTOR	Identified -	Receptors identified that have access to	Lime	ted - Little or no potential for receptors i	to have access to	(Flace all X liest to one below)		
CTOR	contaminated soil			contaminated soil	Identified:			
	Potential -	Potential for receptors to have access to				Potential:		
		contaminated soil						
		'				Limited: X		
	Brief Rationale	for Selection Under future conditions there	will be little potential for human co	ontact				
								
···								
vity Name	NEWPORT RI	NETC ·	Site Name: SITE 00001		Soil Category	y: Low		

.

.

•

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 11/17/97						
Location (State): RI	Media Evaluated (GW, SW, Sediment, Soil): GW SOIL Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage): RI						
Site (Name/RMIS ID) / Project for FUDS: SITE 00002							
RMIS Site Type: LANDFILL	Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes						
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N): No Site Rank: Med						
	SITE SUMMARY						
(Include only key elements of information us	sed to conduct the relative risk site evaluation. Attach map view of site if desired.)						
Brief Site Description (Include site type, materials disposed of, dates of operation Site 2 is a 10 acre landfill located adjacent to Narraganseit Bay. The landfill was ope of include spent acids, paints, oils, and PCB's. The site was excessed by the Navy in Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Suspected pathways include groundwater and soil	rated following world was II was tooks away a second						
Brief Description of Receptors (Human and Ecological): Receptors are human							
(1) Use to record information on Sites and Areas of Concern (AOC) for Relative Rick S							

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req (or RFA) phase that has not been entered into RMIS.

To the FUDS Program. "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

				Ground Wa	ter ·		
CONTAMINA	NT						
HAZARD	.17.1	Contonio	Maximun		Standard		
FACTOR (1)		Contaminant	ug/l		ug/L	Ratio (2)	
(CHF)		Manganese and compounds	4 210		180 0	23 390	
((111)		Antimony and compounds	118		150	7 870	(Place an "X" next to one below)
		Arsenic (cancer endpoint)	22 4	· · · · · · · · · · · · · · · · · · ·	4 5	4 980	
		Aluminum Regultum and company to	93,200		37 000 0	2 520	Significant (If Total > 100):
		Beryllium and compounds Chlorobenzene	3 8		16	2 380	-
		Dichlorobenzene, 1,4-	79 0		39 0	2 030	Moderate (If Total 2 - 100):
		Calcium	83 0		47 0	1 770	-
		Methylnaphthalene 2-	18,000		0 000 11	1 640	Minimal (If Total < 2):
		Cobalt	210 (0.0	1 170	·
		Coban	192 (180 0	I 070	
		(1) Evaluate for human contaminants only		•	Total:	54.300	
		(2) Ratio = Maximum Concentration/Stand Note Only top ten contaminants are display	dard		İ		
HIGRATION PATHWAY	Evident -	Analytical data or observable evidence indi- contamination in the media is moving away		Confined	- Information indicates that the po		(Place an "X" next to one below)
FACTOR MPF)					contaminant migration from the geological structures or physical	source is limited (due to controls)	Evident:
	Potential -	Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Confi				Potential: X	
	Brief Rational	le for Selection Geologic conditions provide	,	ndwater migration			Confined:
ECEPTOR ACTOR	Identified -	Identified - There is a threatened or potentially threatened water supply downgradient of the source The GW (cont. or not) is a current			There is no potentially threatened water supply well downgradient of the source. The groundwater is not considered a potential source of		
lF)		drinking water source or is equiv to (Class I	or IIA aquifer)		DW or is of limited benificial use	(IIIA, IIIB or perched aquifer)	Identified:
•	Potential -	There is no potentially threatened water supp	oly well downgradient				Potential:
		of the source The groundwater is potentially irrigation or agriculture, but not presently use	y usable for DW, ed (Class IIB aquifer)				Limited: X
	Brief Rationale uifer as a non d	e for Selection There is no known water sup- frinking water aquifer (class GB)	ply well down gradient	however classific	ation identifies the aq -		
			,				·
tivity Name	NEWPORT RI	NETC ,	Site Name:	SITE 00002		Groundwater Category:	Low
						(High, Medium, Low)	2011

v

.

•

			Soil		· · · · · · · · · · · · · · · · · · ·	
ONTAMINA	N.T.B.					
ONTAMINA: INZARD	N 1		Maximum Conc.	Standard		
ACTOR (I)		Contaminant Lead	mg/Kg	mg/kg	Ratio (2)	
HF)		Arsenic (cancer)	1,970 0	400 0	. 4 930	
,		Manganese and compounds	30 1	22 0	1 370	(Place an "X" next to one below)
		Aroclor-1260	490 0	380 0	1 290	,
		Benzo[a]pyrene	8 0	0.0	1 140	Significant (If Total > 100):
		Chrysene	5 9	61	0 970	, <u>-</u>
		Calcium	110	24 0	0 460	Moderate (If Total 2 - 100):
		Antimony and compounds	8,720 0	23 000 0	0 380	· -
		Dibenz[ah]anthracene	10 3	310	0 330	Minimal (If Total < 2):
		Aluminum	16	61	0 260	•
		Albinition	12,700 0	77,000 0	0 160	
		(1) Evaluate for human contaminants only				
		(2) Ratio = Maximum Concentration/Stand	ard	Total:	12.190	
		Note Only top ten contaminants are display	aru ad	L		
	Brief Rational	Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Confi e for Selection Information is not sufficient	sufficient ned	onfined		Potential: X Confined:
CEPTOR CTOR)	Identified -	Receptors identified that have access to contaminated soil		Little or no potential for receptors to contaminated soil	have access to	(Place an "X" next to one below)
•	Potential -	Potential for receptors to have access to contaminated soil				Potential: X
	Brief Rationale	for Selection Under current conditions then	e is potential for receptors to have access	to soils		
ivity Name	NEWPORT RI	NETC	Site Name: SIFE 00002		Soil Category:	Med

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 11/18/97						
Location (State): RI	Media Evaluated (GW, SW, Sediment, Soil):						
Site (Name/RMIS ID) / Project for FUDS: SITE 00004	Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage):						
RMIS Site Type: SURFACE DISPOSAL AREA	Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes						
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N): No Site Rank: NE						
	SITE SUMMARY						
(Include only key elements of information use	ed to conduct the relative risk site evaluation. Attach map view of site if desired)						
Brief Site Description (Include site type, materials disposed of, dates of operation Site 4 is a 6 acre disposal area used from 1978 to 1982 Wastes disposed of include cans and ash. The site is surrounded by a chain link pence and overgrown with heavy	Concrete coran lumbos time anno ablances						
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Suspected pathways include groundwater, surface water, soils							
Brief Description of Receptors (Human and Ecological): Potential receptors include both human and ecological.							
(1) Use to record information on Sites and Areas of Concern (AOC) for Relative Risk S A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "r	Site Evaluation The term Site is defined as a discrete area for which suspected contamination has been verified and req						

A Site by definition has been, or will be, entered into RMIS For the FUDS Program. "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 11/18/97			
Location (State): RI	Media Evaluated (GW, SW, Sedi	· · · · · · · · · · · · · · · · · · ·	,		
Site (Name/RMIS ID) / Project for FUDS: SITE 00007	Phase of Exec. (SI, RI, FS, Remy,				
RMIS Site Type: UNDERGROUND TANK FARM	Agr. Status (Y/N, If yes, type of a				
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N):	No No	Site Rank:	Med ,	
	SITE SUMMARY				
(Include only key elements of information use	d to conduct the relative risk site evalua	ation Attach map vi	ew of site if desired)		
Brief Site Description (Include site type, materials disposed of, dates of operation, Site 7 consists of six steel underground storage tanks each with a 1 1 M gallon capacity capacity. Tank Farm One was used for the storage of ballast sludge, jet engine fuel, sh Farm One is approximately 30 acres. Data collected under the UST Program	u and two steel shares	n a 2 3M gallon soline Tank			
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Pathway would be groundwater					
Brief Description of Receptors (Human and Ecological): Potential receptors are human.					
(1) Use to record information on Sites and Areas of Concern (AOC) for Relative Rick Si	de Foot and the second				

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req. A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

			Groui	id Water		
CONTAMINA	NT					·
HAZARD	1111	Contaminant	Maximum Conc.	Standard		
FACTOR (1)		Benzene	ug/L 57 0	ug/L	Ratio (2)	
(CHF)		Cityl benzene	250 0	39 0 1,300 0	1 460	
ľ		Methyl tertbutyl ether (MTBE)	34 0	1,300 0	0 190	(Place an "X" next to one below)
ł	J.	Xylene, m-	209 0	1,400 0	0 190	
}		Toluene	50 0	720 0	0 150	Significant (If Total > 100):
				7200	0.070	Moderate (If Total 2 100)
						Moderate (If Total 2 - 100):
						Minimal (If Total < 2):
1						-
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Stand Note Only top ten contaminants are display	ard	Total:	2 062	
FACTOR (MPF)		Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Confine for Selection Available data shows containation with time	sufficient ned	contaminant migration from the sign geological structures or physical of the structures of physical of the structures of physical of the structures of the structures of the structures of the structure of the st		Evident: X Potential: Confined:
RECEPTOR	Identified -	There is a threatened or potentially threatene	d water supply	mated. There is no necessary to do an all a		(Place an "X" next to one below)
ACTOR RF)		downgradient of the source The GW (cont drinking water source or is equiv to (Class I	or not) is a current	the source The groundwater is no DW or is of limited benificial use	t considered a potential source of	Identified:
•	Potential -	There is no potentially threatened water supp	ly yell downwardows	C	, , , , , , , , , , , , , , , , , , , ,	Potential:
		of the source The groundwater is potentially irrigation or agriculture, but not presently use	usable for DW,			Limited: X

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 11/18/97						
Location (State): RI	Media Evaluated (GW, SW, Sediment, Soil):						
Site (Name/RMIS ID) / Project for FUDS: SITE 00008	Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage):						
RMIS Site Type: SURFACE DISPOSAL AREA	Agr. Status (V/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes						
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N): No Site Rank: NE						
(Include only key elements of information used	SITE SUMMARY I to conduct the relative risk site evaluation Attach map view of site if desired.)						
Brief Site Description (Include site type, materials disposed of, dates of operation, Site 8 was a disposal area used for an unspecified period of time and was used for the d cans. The site consists of an elevated stream embankment area and a flat storage area of the site consists of an elevated stream embankment area.	ISDOSAL OF SCIAN lumber, tires, wire and empty point						
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Potential pathways includes groundwater, surface water and sediments	·						
Brief Description of Receptors (Human and Ecological): Potential receptors include both human and ecological							
	·						

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 10/21/97		•		
Location (State): RI	Media Evaluated (GW, SW, Sediment, Soil): GW SWH SEDH SEDEM SOIL					
Site (Name/RMIS ID) / Project for FUDS: SITE 00009	Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage): CERCLA RI/FS					
RMIS Site Type: <u>FIRF/CRASH TRAINING AREA</u>	Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes					
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N):	No	Site Rank:	High		
•	SITE SUMMARY					
(Include only key elements of information used	d to conduct the relative risk site evalua	ation Attach ma	p view of site if desired)			
Brief Site Description (Include site type, materials disposed of, dates of operation, Site 9 was used from World War II to 1972 as a fire fighting training area where a mixtraining practices. Historical records show the 5 5 acre site to have had a layout of und to the training areas. Currently the site is entirely landscaped and used for recreational	ture of oil and water was set on fire for	fire fighting water mixture				
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Known pathways include groundwater, surface water, sediment and soil	٠.					
. Brief Description of Receptors (Human and Ecological): Receptors include both human and ecological	•					

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req (or RFA) phase that has not been entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

			Grou	ind Water	· · · · · · · · · · · · · · · · · · ·	
CONTAMINA	NT		Maximum Conc.	Standard		1
HAZARD		Contaminant	սց/լ_	ug/l,	Potes (2)	
FACTOR (1)		Lead	4,120 0	4.0	Ratio (2)	
CHF)		Manganese and compounds	28 000 0	180 0	155 560	(D)
		Arsenic (cancer endpoint)	130 0	4.5	28 890	(Place an "X" next to one below)
		Calcium	205,000 0	11 000 0	18 640	C1: 5
		Beryllium and compounds	93	16	5 810	Significant (If Total > 100):
		Aluminum	193,000 0	37 000 0	5 220	No. 4. Commission and the commission of the comm
		Cadmium and compounds	48 8	180	2 710	Moderate (If Total 2 - 100):
		Antimony and compounds	37.5	150	2 500	Minus I stem a decor
		Benzo[a]pyrene	20	0 92	2 170	Minimal (If Total < 2):
		Cobalt	297 0	1800	1 650	
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Stand Note Only top ten contaminants are display	lard ved	- Total:	1260.342	
GRATION THWAY CTOR PF)	Evident -	(Place an "X" next to one below)				
	Potential -	Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Confi	Potential: X Confined:			
	Brief Rational towards the ba	e for Selection Analytical data shows containly due to tidal flusing	nination in the form of free prod	uct and metals with migration -		
CEPTOR CTOR)	Identified -	There is a threatened or potentially threatene downgradient of the source The GW (contidrinking water source or is equivate (Class I	or not) is a current	the source The groundwater is not DW or is of limited benificial use (considered a potential source of	(Place an "X" next to one below) Identified:
•	Potential -	There is no potentially threatened water supp of the source The groundwater is potentially irrigation or agriculture, but not presently use	usable for DW,		. ,,	Potential: X Limited:
	Brief Rationale identified as a r er with treatme	for Selection The is no threatened water su non-attainment area but designated to be suitable int	oply well downgradient however for public drinking wat -	classification of groundwater -		
vity Name <u>I</u>	NEWPORT RI	NETC	Site Name: SITE 000	009	Groundwater Category:	liigh

			Surfa	ce Water Human				
CONTAMINA HAZARD FACTOR (I) (CHF)	NT	Contaminant Calcium Antimony and compounds Manganese and compounds Lead Arsenic (cancer endpoint) Dieldrin Nickel and compounds Selenium Barium and compounds	Maximum Concug/L 82,600 0 25 8 225 0 4 2 11 0 016 14 9 3 0 35 4	c. Star u . 11 . 11 . 11	ndard g/L 0000 0 5 0 80 0 4 0 4 5 4 2 90 0 90 0	Ratio (2) 7 510 1 720 1 250 1 050 0 240 0 040 0 020 0 020 0 010	(Place an "X" next to one belo Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2);	nv)
		Methylnaphthalene. 2-	20		000	0 010		
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed			Total:	11.917		
MIGRATION PATHWAY FACTOR (MPF)	Evident - Potential -	Analytical data or observable evidence indicates that contamination in the media is present at, is moving to a potential point toward, or has moved to a point of exposure presence of geological Possibility for contamination to be present at or migrate to a point of exposure, or information is not sufficient.				ld by due to the	(Place an "X" next to one below Evident: Potential: X	v) - -
	Brief Rational	to make a determination of Evident or Confined					Confined:	•
RECEPTOR ACTOR RF)	ldentified -	Receptors identified that have access to surface	water	Limited - Little or no potei surface water	ntial for receptors to	have access to	(Place an "X" next to one below	·) ·
•	Potential -	Potential for receptors to have access to surface	water			•	Potential: X Limited:	
	Brief Rationale	e for Selection		,				•
ctivity Name	NEWPORT RI	NETC S	iite Name: SITI	E 00009	Surface W	ater Human Category: (High, Medium, Low)	Med .	

8

,

			Sediment Hui	man		
CONTAMINA LAZARD	NT	Contaminant	Maximum Conc. mg/Kg	Standard mg/Kg	D. (2)	
FACTOR (1)		Aluminum	51,200 0	77 000 0	Ratio (2) 0 660	
CHF)		Arsenic (cancer endpoint)	114	22 0	0 520	(Dt. Harm
		Aroclor-1254	0 542	14	0 390	(Place an "X" next to one below)
		Lead	123 0	400 0	0 310	Constitution of the Third Constitution of the
		Antimony and compounds	1 93	310	0 060	Significant (If Total > 100);
		Cadmium and compounds	1 27	380	0 030	Made and the management
		Copper and compounds	75 4	2 800 0	0 030	Moderate (If Total 2 - 100):
		Chromium (total)	70 6	3,000 0	0 020	Montanal areas and a second
		Mercury and compounds (inorganic)	0 443	23 0	0 020	Minimal (If Total < 2):
		Nickel and compounds	27 9	1 500 0	0 020	
				1,5000	0 020	
		(1) Evaluate for human contaminants only		Total:	2.074	
		(2) Ratio = Maximum Concentration/Standard			2.074	
		Note Only top ten contaminants are displayed		, L <u></u>		•
	Potential -	Possibility for contamination to be present at or to a point of exposure, or information is not suf to make a determination of Evident or Confined	ficient			Potential: X Confined:
	Brief Rationale	e for Selection Information not sufficient to ma	ke a determination of Evident of Con	fined		
CEPTOR	Identified •	Receptors identified that have access to sedimer	t Limited -	Little or no potential for receptors to ha	ive access to sediment	(Place an "X" next to one below)
CTOR ()		•		, , , , ,	The second secon	Identified:
•	Potential -	Potential for receptors to have access to sedimen	•			Potential: X
		,	•			Limited:
	Brief Rationale	for Selection Potential for receptors to have ac	cess to sediment			
	····					
ivity Name	NEWPORT RI	NETC S	ite Name: SITE 00009		ent Human Category:	

(High, Medium, Low)

					•	
CONTAMINA TAZARD	INT		Maximum Conc.	Standard		
FACTOR (1)		Contaminant	mg/Kg	mg/Kg	Ratio (2)	
CHF)		Aroclor-1254	0.542	0.0	10 840	
(III)		Copper and compounds	75 4	7 0	10 770	(Place an "X" next to one below)
		Chromium (total)	70 6	8 0	8 820	•
		Lead	123 0	35 0	3 510	Significant (If Total > 100):
		Mercury and compounds (inorganic)	0 443	0 15	2 950	-
		Zinc	215 0	120 0	1 790	Moderate (If Total 2 - 100):
		Silver and compounds	1 16	10	I 160	, , , , , , , , , , , , , , , , , , , ,
		Antimony and compounds	1 93	2 0	0 960	Minimal (If Total < 2):
		Nickel and compounds	27 9	30 0	0 930	
		Arsenic (cancer endpoint)	114	33 0	0 350	
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standar Note Only top ten contaminants are displayed	d I	Total:	42.350	
MPF)	Potential - Brief Rational er further asse:	Possibility for contamination to be present at c to a point of exposure, or information is not su to make a determination of Evident or Confine e for Selection Analytical data shows elevated ssment needed to determine if receptors are at risk	fficient d l levels in sediments in the bay adia	of geological structures or or physical structures or or or physical structures or or or physical structures or		Evident: Potential: X Confined:
ECEPTOR ACTOR F)	Identified -	Receptors identified that have access to sedime		ed - Little or no potential for receptors to	have access to sediment	(Place an "X" next to one below)
			,			D-4C-1-
	Potential -	Potential for receptors to have access to sedime	nt ,			Potential:
						Limited:
	Brief Rationale	for Selection Ecological receptors have been	identified			,
	· · · · · · · · · · · · · · · · · · ·				······································	

			Soil		•	,
CONTAMINANT	r		T Was C			
HAZARD		Contaminant	Maximum Conc.	Standard		
FACTOR (1)		Lead	mg/kg 2,970 0	mg/Kg	Ratio (2)	
(CHF)		Manganese and compounds	697.0	400 0	7 430	
		Calcium	21 000 0	380 0	1 830	(Place an "X" next to one below)
		Arsenic (cancer endpoint)	1000	23 000 0	0 9 1 0	
	1	Benzo[a]pyrene	2 7	22 0	0 450	Significant (If Total > 100):
		Antimony and compounds	91	61	0 440	
		Aluminum	11 600 0	310	0 290	Moderate (If Total 2 - 100):
		Nickel and compounds	221 0	77,000 0	0 150	
		Chrysene	2210	1,500 0	0 150	Minimal (If Total < 2):
		Zinc	1,910 0	24 0	0 120	_
			1,710 0	23 000 0	0 080	_]
	•	(1) Evaluate for human contaminants only				j
		(2) Ratio = Maximum Concentration/Stand	lard	Total:	12.526	
		Note Only top ten contaminants are display	ved	L_		
	Potential - Brief Rational	Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Confident of Analytical data shows contains	sufficient ned	surface soils		Potential: Confined:
ECEPTOR 16 CTOR	dentified -	Receptors identified that have access to contaminated soil	Limited -	Little or no potential for receptors to l	nave access to	. (Place an "X" next to one below)
F)				contaminated soil		ldentified: X
Pe	otential -	Potential for receptors to have access to				Potential:
		contaminated soil	•			Limited:
Br so	rief Rationale ils	for Selection Due to use of site for recreating	onal purposes human receptors have acco	ess to contaminated -	,	
	EWPORT RI					

-

Date Entered (Day, Month, Year):	: 11/18/97			
Media Evaluated (GW, SW, Sedin	nent, Soil): GW	SOIL		
Phase of Exec. (SI, RI, FS, Remy,	RD/RA, or equiv. R	CRA Stage):		
National Priority List (Y/N):	No	Site Rank:	Med	
SITE SUMMARY d to conduct the relative risk site evaluation	tion Attach map vic	ew of site if desired)		
and other relevant information): tanks each with a 2 52M gallon capacity fuel and are currently operational .	. The site is surrour	nded		
			,	
			·	
	Media Evaluated (GW, SW, Sedin Phase of Exec. (SI, RI, FS, Remy, Agr. Status (Y/N, If yes, type of ag National Priority List (Y/N): SITE SUMMARY d to conduct the relative risk site evaluation of the relevant information): lanks each with a 2 52M gallon capacity	Media Evaluated (GW, SW, Sediment, Soil): GW Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. R Agr. Status (Y/N, If yes, type of agreement e.g., FFA, National Priority List (Y/N): No SITE SUMMARY d to conduct the relative risk site evaluation. Attach map vice and other relevant information): lanks each with a 2 52M gallon capacity. The site is surrour	Media Evaluated (GW, SW, Sediment, Soil): GW SOIL Phase of Exec. (SI, RI, FS, Remy, RD/RA, or equiv. RCRA Stage): Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes National Priority List (Y/N): No Site Rank: SITE SUMMARY d to conduct the relative risk site evaluation. Attach map view of site if desired.) and other relevant information): lanks each with a 2 52M gallon capacity. The site is surrounded.	Media Evaluated (GW, SW, Sediment, Soil): Phase of Exec. (SI, RI, FS, Remy, RD/RA, or equiv. RCRA Stage): Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes National Priority List (Y/N): No Site Rank: Med SITE SUMMARY d to conduct the relative risk site evaluation. Attach map view of site if desired.) and other relevant information): lanks each with a 2 52M gallon capacity. The site is surrounded.

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

			. G r	round Wat	er			
CONTAMINA HAZARD FACTOR (1) (CIIF)	NT	Contaminant Naphthalene Benzene Anthracene Ethyl benzene Xylene (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Stanc	Maximum Conc ug/t. 42 0 4 2 13 0 4 9 1 7		Standard ug/L 240 0 39 0 1 800 0 1 300 0 1,400 0	Ratio (2) 0 170 0 110 0 010 0 000 0 000	(Place an "X" ne Significant (If T Moderate (If To Minimal (If Tot	otal 2 - 100):
MIGRATION PATHWAY FACTOR (MPF)	Evident - Potential - - Brief Rationale	Analytical data or observable evidence indicontamination in the media is moving away. Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Conf	ricates that y from the source at or migrate t sufficient fined	Confined -	Information indicates that the pote contaminant migration from the so geological structures or physical co	ource is limited (due to	(Place an "X" nex Evident: Potential: Confined:	(t to one below)
RECEPTOR FACTOR (RF)	ldentified - Potential -	There is a threatened or potentially threatened downgradient of the source. The GW (cont drinking water source or is equivate (Class I There is no potentially threatened water support the source. The groundwater is potentially irrigation or agriculture, but not presently use	or not) is a current I or IIA aquifer) ply well downgradient ly usable for DW,		There is no potentially threatened with the source. The groundwater is not DW or is of limited benificial use (considered a potential source of	(Place an "X" next Identified: Potential:	t to one below)
	Brief Rationale	for Selection GW is designated as suitable	e for drinking water however is	is not current	ly used			
Activity Name	NEWPORT RIT	NETC	Site Name: SITE	E 00010		Groundwater Category: (High, Medium, Low)	Low	

~

				Soil			
CONTAMINAN HAZARD FACTOR (1) (CHF)	NI	Contaminant Naphthalene Trichlorobenzene, 1 2,4-		num Conc. 1g/Kg 000 0 900 0	Standard mg/Kg 800 0 620 0	Ratio (2) 7 500 4 680	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standar Note Only top ten contaminants are displayed	d d		Total:	12.177	•
HGRATION ATHWAY ACTOR MPF)	Evident - Potential -	Analytical data or observable evidence indicat contamination is present at, is moving towards moved to a point of exposure	s or has		Low possibility for contamination or migrate to a point of exposure	to be present at	(Place an "X" next to one below) Evident:
		Possibility for contamination to be present at o to a point of exposure, or information is not su to make a determination of Evident or Confine for Selection Information not sufficient to m	officient ed	n ·			Potential: X Confined:
ECEPTOR ACTOR (F)	Identified -	Receptors identified that have access to contaminated soil			Little or no potential for receptors to contaminated soil	o have access to	(Place an "X" next to one below)
	Potential -	Potential for receptors to have access to contaminated soil					Potential: X Limited:
	Brief Rationale i	for Selection There is a potential for receptor	's since tank farm	is currently operational	.1		
tivity Name <u>r</u>	NEWPORT RI N	NETC	Site Name:	SITE 00010		Soil Category:	Med

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year)): I1/18/97			
Location (State): RI	Media Evaluated (GW, SW, Sedi	ment, Soil): G'	W SOIL		
Site (Name/RMIS ID) / Project for FUDS: SITE 00011	Phase of Exec. (SI, RI, FS, Remy,		·		
RMIS Site Type: UNDERGROUND TANK FARM	Agr. Status (Y/N, If yes, type of a				
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N):	No	Site Rank:	Low	
	SITE SUMMARY				
(Include only key elements of information us	sed to conduct the relative risk site evalua	ation Attach map	view of site if desired.)		
Brief Site Description (Include site type, materials disposed of, dates of operation Tank farm #3 is 30 acres in size and consists of 5 concrete underground storage tanks (2 IM gallon capicity) Tanks were used to store JP-4 and JP-5 jet engine fuel	S (1.55M gallon capicity) and 2 steel and	erground storage			
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Potential pathways include groundwater and soil					
Brief Description of Receptors (Human and Ecological): Potential receptors include human					1

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req (or RFA) phase that has not been entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

	-			Ground Wa	iter		
CONTAMINAN HAZARD FACTOR (1) (CHF)	VT·	Contaminant Naphthalene Tetrachlorocthylene (PCE) Xylene (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standa Note Only top ten contaminants are displayed	lard	JIIC.	Standard ug/L 240 0 110 0 1 400 0	Ratio (2) 0 580 0 050 0 000	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION PATHWAY FACTOR (MPF)	Potential -	Analytical data or observable evidence indicate contamination in the media is moving away for Possibility for contamination to be present at to a point of exposure, or information is not so to make a determination of Evident or Confineration of Selection Information is not sufficient to	from the source It or migrate sufficient ined		I - Information indicates that the pote contaminant migration from the sign geological structures or physical contamination.	source is limited (due to	(Place an "X" next to one below) Evident: Potential: X Confined:
	Potential -	There is a threatened or potentially threatened downgradient of the source. The GW (cont of drinking water source or is equivated to (Class I of the source). There is no potentially threatened water supply of the source. The groundwater is potentially irrigation or agriculture, but not presently used for Selection.	or not) is a current or IIA aquifer) ly well downgradient y usable for DW, ad (Class IIB aquifer)		There is no potentially threatened the source. The groundwater is no DW or is of limited benificial use (ot considered a potential source of	(Place an "X" next to one below) Identified: Potential: X Limited:
	ss gradient of site	e	CV. N	public ground wa		Groundwater Category:	Low

			Se	oil		
CONTAMINANT HAZARD FACTOR (I) (CHF)		Contaminant thalene benzene	Maximum Conc. mg/Kg 77 0 5 3	Standard mg/Kg 800 0	Ratio (2) 0 100	
)—— <u>·</u>	ne (mixed)	72	690 0 990 0	0 010	(Place an "X" next to one below) Significant (If Total > 100):
						Moderate (If Total 2 - 100): Minimal (If Total < 2):
	(2) Rat	valuate for human contaminants only atio = Maximum Concentration/Standard Only top ten contaminants are displayed		Total:	0.116	
MIGRATION Eviden PATHWAY FACTOR (MPF)	contami	rical data or observable evidence indicates nination is present at, is moving towards of to a point of exposure	s that Conf or has	fined - Low possibility for contamination or migrate to a point of exposure	to be present at	(Place an "X" next to one below) Evident:
Potenti	to a poin	lity for contamination to be present at or into of exposure, or information is not suffice a determination of Evident or Confined	Ticient			Potential: X Confined:
Brief R	Rationale for Select	ction Information is not sufficient to m	nake determination			
RECEPTOR Identifi FACTOR RF)		ors identified that have access to inated soil	Limi	uted - Little or no potential for receptors to contaminated soil	to have access to	(Place an "X" next to one below)
Potentis		al for receptors to have access to mated soil				Potential: X Limited:
Brief Ra	ationale for Selectiv	Potential for receptors to have acc	cess exists since tank farm is op-	erational		
ctivity Name <u>NEWPO</u>	ORT RI NETC	s	Site Name: SITE 00011	1	Soil Categor	

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year)	: 11/26/97	•	1	
Location (State): RI	Media Evaluated (GW, SW, Sedin	nent, Soil): GW	SWII SEDEM SOIL		
Site (Name/RMIS ID) / Project for FUDS: SITE 00012	Phase of Exec. (SI, RI, FS, Remy,	RD/RA, or equiv. R	CRA Stage):		
RMIS Site Type: UNDERGROUND TANK FARM	Agr. Status (Y/N, If yes, type of ag	reement e.g., FFA, l	Permit, Order) Yes		
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N):	No	Site Rank:	High	
(Include only key elements of information used Brief Site Description (Include site type, materials disposed of, dates of operation, Site 12 is an 80 acre tank farm which consists of 12 underground storage tanks each wistored at the site. A brook crosses the western portion of the site and discharges to the	and other relevant information): th a 2 5M gallon capacity Diesel and f			·	
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Potential pathways consist of groundwater, sediment and soil	-				
Brief Description of Receptors (Human and Ecological): Potential receptors include both human and ecological					

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

PATHWAY FACTOR (MPF)	Cvident -	Contaminant Arsenic (cancer endpoint) Manganese and compounds Lead Calcium Aluminum Beryllium and compounds Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate contamination in the media is moving away from	d tes that C	cont	Standard ug/L. 4 5 180 0 4 0 11,000 0 37 000 0 1 6 180 0 180 0 730 0 260 0 Total:	irce is limited (due to	(Place an "X" next to one below Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION EV PATHWAY FACTOR (MPF)	Evident -	Arsenic (cancer endpoint) Manganese and compounds Lead Calcium Aluminum Beryllium and compounds Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed	448 0 9,740 0 156 0 86 600 0 251 000 0 8 5 669 0 391 0 749 0 168 0	cont	4 5 180 0 4 0 11,000 0 37 000 0 1 6 180 0 180 0 730 0 260 0 Total:	99 560 54 110 39 000 7 870 6 780 5 310 3 720 2 170 1 030 0 650 221.536	Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION EV PATHWAY FACTOR (MPF)	Evident -	Manganese and compounds Lead Calcium Aluminum Beryllium and compounds Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed	9,740 0 156 0 86 600 0 251 000 0 8 5 669 0 391 0 749 0 168 0	cont	180 0 4 0 11,000 0 37 000 0 1 6 180 0 180 0 730 0 260 0 Total:	54 110 39 000 7 870 6 780 5 310 3 720 2 170 1 030 0 650 221.536	Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION EV PATHWAY FACTOR (MPF)	Evident -	Lead Calcium Aluminum Beryllium and compounds Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	156 0 86 600 0 251 000 0 8 5 669 0 391 0 749 0 168 0	cont	4 0 11,000 0 37 000 0 1 6 180 0 180 0 730 0 260 0 Total:	39 000 7 870 6 780 5 310 3 720 2 170 1 030 0 650 221.536	Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
PATHWAY FACTOR (MPF)	Evident -	Calcium Aluminum Beryllium and compounds Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed	86 600 0 251 000 0 8 5 669 0 391 0 749 0 168 0	cont	11,000 0 37 000 0 16 180 0 180 0 730 0 260 0 Total:	7 870 6 780 5 310 3 720 2 170 1 030 0 650 221.536	Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
PATHWAY FACTOR (MPF)	Evident -	Aluminum Beryllium and compounds Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed	251 000 0 8 5 669 0 391 0 749 0 168 0	cont	37 000 0 1 6 180 0 180 0 730 0 260 0 Total:	6 780 5 310 3 720 2 170 1 030 0 650 221.536	Moderate (If Total 2 - 100): Minimal (If Total < 2):
PATHWAY FACTOR (MPF)	Evident -	Beryllium and compounds Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	8 5 669 0 391 0 749 0 168 0	cont	1 6 180 0 180 0 730 0 260 0 Total:	5 310 3 720 2 170 1 030 0 650 221.536	Moderate (If Total 2 - 100): Minimal (If Total < 2):
PATHWAY FACTOR (MPF)	Evident -	Cobalt Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	669 0 391 0 749 0 168 0	cont	180 0 180 0 730 0 260 0 Total:	3 720 2 170 1 030 0 650 221.536	Minimal (If Total < 2):
PATHWAY FACTOR (MPF)	Evident -	Chromium (total) Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	391 0 749 0 168 0	cont	180 0 730 0 260 0 Total: rmation indicates that the poter aminant migration from the sou	2 170 1 030 0 650 221.536	Minimal (If Total < 2):
PATHWAY FACTOR (MPF)	Evident -	Nickel and compounds Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	749 0 168 0	cont	730 0 260 0 Total: rmation indicates that the poter aminant migration from the sou	1 030 0 650 221.536	
PATHWAY FACTOR (MPF)	Evident -	Vanadium (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	d d	cont	Total: Trotal: rmation indicates that the poter aminant migration from the sou	0 650 221.536	
PATHWAY FACTOR (MPF)	Evident -	(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	d d tes that	cont	Total: rmation indicates that the poter aminant migration from the soi	221.536 Stral for urce is limited (due to	(Place an "X" next to one below
PATHWAY FACTOR (MPF)	Evident -	(2) Ratio = Maximum Concentration/Standard Note Only top ten contaminants are displayed Analytical data or observable evidence indicate	d tes that C	cont	rmation indicates that the poter aminant migration from the sou	itial for arce is limited (due to	(Place an "X" next to one below
PATHWAY FACTOR (MPF)	Evident -	Analytical data or observable evidence indicate contamination in the media is moving away from	tes that Com the source	cont	aminant migration from the soi	irce is limited (due to	(Place an "X" next to one belo
Por				geoi	ogical structures or physical co	ntrols)	Evident:
	otential -	Possibility for contamination to be present at or to a point of exposure, or information is not suf to make a determination of Evident or Confined	ifficient				Potential: X Confined:
Bri	rief Rationale	for Selection Information is not sufficient to	make a determination of evid	dent or confined			
RECEPTOR Ideni FACTOR RF)		There is a threatened or potentially threatened w downgradient of the source. The GW (cont. or a drinking water source or is equiv. to (Class I or	not) is a current	the s	e is no potentially threatened wo purce. The groundwater is not our is of limited benificial use (II	ater supply well downgradient of considered a potential source of IIA, IIIB or perched aquifer)	(Place an "X" next to one below
Pote		There is no potentially threatened water supply of the source The groundwater is potentially us irrigation or agriculture, but not presently used (sable for DW				Potential: X Limited:
Brie of gi	ief Rationale f groundwater i	or Selection There is no potentially threatened entifies is as non-attainment area but suitable for	ed water supply well down gra or drinking water	radient however	classification - '	,	,

			Surface Wat	ier fluman		
CONTAMINA HAZARD FACTOR (1) (CHF)	NT	Contaminant Manganese and compounds Calcium Carbon disulfide Lead Cadmium and compounds Carbon tetrachloride Zinc Chromium (total) Vanadium Selenium	Maximum Conc. ug/I, 1,930 0 20,300 0 26 0 3 8 3 3 3 0 1 190 0 4 0 5 0 3 1	Standard ug/L 180 t) 11 000 0 21 0 4 0 18 0 17 0 11 000 0 180 0 260 0 180 0	Ratio (2) 10 720 1 850 1 240 0 950 0 180 0 180 0 110 0 020 0 020	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): X Minimal (If Total < 2):
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standar Note Only top ten contaminants are displayed		Total:	15.290	
MIGRATION PATHWAY FACTOR (MPF)	Evident -	Analytical data or observable evidence indical contamination in the media is present at, is motoward, or has moved to a point of exposure		ined - Information indicates a low potent to a potential point of exposure (co presence of geological structures of	ould by due to the	(Place an "X" next to one below) Evident:
,	Potential -	Possibility for contamination to be present at common to a point of exposure, or information is not sure to make a determination of Evident or Confine	ufficient			Potential: X Confined:
	Brief Rationale	: for Selection	an Evident or Confined pathway			
RECEPTOR FACTOR (RF)	ldentified -	Receptors identified that have access to surface	e water Limit	ted - Little or no potential for receptors (surface water	to have access to	(Place an "X" next to one below)
·	Potential -	Potential for receptors to have access to surface	e water			Potential: X Limited:
	Brief Rationale	for Selection Potential for receptors to have :	access to contaminants in the surfac	ce water		
Activity Name	NEWPORT RIN	NETC	Site Name: SIFE 00012	Surface'	Water Human Category:	Med

			Sediment Leo M	larine		
CONTAMINA	NT		Maximum Conc.	Standard		7
HAZARD		Contaminant	mg/Kg	mg/Kg	Ratio (2)	-
FACTOR (1)		Calcium	791 0	120 0	6 590	7
(CHF)		Chromium (total)	25 9	8 0	3 240	(Place an "X" next to one below)
		Copper and compounds	17.8	70	2 540	1
		Zinç	82 0	120 0	0 680	Significant (If Total > 100):
		Arsenic (cancer endpoint)	21 1	33 0	0 640	1
		Lead	12 1	35 0	0 350	Moderate (If Total 2 - 100):
		Cobalt	25 0	80 0	0 3 1 0	1 -
		Cadmium and compounds	0 78	5 0	0 160	Minimal (If Total < 2):
		(1) Evaluate for human contaminants only		Total:	14.509	
		(2) Ratio = Maximum Concentration/Stand	ard .		# 76/U /	
		Note Only top ten contaminants are display		_		J
IIGRATION	Evident -	Analytical data or observable evidence indic	cates that Confined -	Information indicates a low potential	for contamination to a	(Place an "X" next to one below)
PATHWAY		contamination in the media is present at, is r	moving	potential point of exposure (could be	•	
PATHWAY FACTOR		contamination in the media is present at, is r toward, or has moved to a point of exposure	moving	potential point of exposure (could be of geological structures or or physical	•	Evident:
PATHWAY FACTOR		toward, or has moved to a point of exposure	moving	• •	•	Evident:
PATHWAY FACTOR	Potential -	toward, or has moved to a point of exposure Possibility for contamination to be present a	moving : at or migrate	• •	•	Evident:X
PATHWAY FACTOR	Potential -	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not	moving it or migrate sufficient	• •	•	Potential: X
PATHWAY FACTOR (MPF)	Potential -	toward, or has moved to a point of exposure Possibility for contamination to be present a	moving it or migrate sufficient	• •	•	- 14
PATHWAY FACTOR	Brief Rationale	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confi	moving it or migrate sufficient	of geological structures or or physical	•	Potential: X
PATHWAY FACTOR MPF)	Brief Rationale s and migrating	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confi For Selection IL imited analytical data indust g towards the bay	moving it or migrate sufficient ined scates possibility for contamination to be p	of geological structures or or physical	controls)	Potential: X
PATHWAY FACTOR MPF) RECEPTOR	Brief Rationale	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confi	moving it or migrate sufficient ined scates possibility for contamination to be p	of geological structures or or physical	controls)	Potential: X Confined:
PATHWAY FACTOR MPF) RECEPTOR FACTOR	Brief Rationale s and migrating	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confi For Selection IL imited analytical data indust g towards the bay	moving it or migrate sufficient ined scates possibility for contamination to be p	of geological structures or or physical	controls)	Potential: X Confined:
PATHWAY FACTOR MPF) RECEPTOR FACTOR	Brief Rationale s and migrating	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confi For Selection IL imited analytical data indust g towards the bay	moving it or migrate sufficient ined scates possibility for contamination to be p	of geological structures or or physical	controls)	Potential: X Confined:
PATHWAY FACTOR MPF) RECEPTOR FACTOR	Brief Rationale s and migrating	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Configer for Selection ILimited analytical data indig towards the bay Receptors identified that have access to seding	moving it or migrate sufficient ined icates possibility for contamination to be p ment Limited -	of geological structures or or physical	controls)	Potential: X Confined:
PATHWAY FACTOR MPF) RECEPTOR ACTOR	Brief Rationale s and migrating Identified -	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confi For Selection IL imited analytical data indust g towards the bay	moving it or migrate sufficient ined icates possibility for contamination to be p ment Limited -	of geological structures or or physical	controls)	Potential: X Confined: X (Place an "X" next to one below) Identified:
ECEPTOR ACTOR	Brief Rationales and migrating Identified - Potential -	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confidence for Selection IL imited analytical data indigent towards the bay Receptors identified that have access to seding Potential for receptors to have access to seding	moving it or migrate sufficient ined cates possibility for contamination to be p ment Limited -	of geological structures or or physical	controls)	Potential: X Confined: X (Place an "X" next to one below) Identified: X
PATHWAY FACTOR MPF) RECEPTOR FACTOR	Brief Rationale s and migrating Identified -	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confidence for Selection ILimited analytical data indigent towards the bay Receptors identified that have access to seding the potential for receptors to the potential for receptors to have access to seding the potential for receptors to the pot	moving it or migrate sufficient ined cates possibility for contamination to be p ment Limited -	of geological structures or or physical	controls)	Potential: X Confined: X (Place an "X" next to one below) Identified: X
PATHWAY FACTOR	Brief Rationales and migrating Identified - Potential -	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confidence for Selection IL imited analytical data indigent towards the bay Receptors identified that have access to seding Potential for receptors to have access to seding	moving it or migrate sufficient ined cates possibility for contamination to be p ment Limited -	of geological structures or or physical	controls)	Potential: X Confined: X (Place an "X" next to one below) Identified: X
PATHWAY FACTOR MPF) RECEPTOR FACTOR	Brief Rationales and migrating Identified - Potential -	toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not to make a determination of Evident or Confidence for Selection IL imited analytical data indigent towards the bay Receptors identified that have access to seding Potential for receptors to have access to seding	moving it or migrate sufficient ined cates possibility for contamination to be p ment Limited -	of geological structures or or physical	controls)	Potential: X Confined: X (Place an "X" next to one below) Identified: X

(High, Medium, Low)

			Soil			
ONTAMINAN	NT		Maximum Conc.	Standard		•
HAZARD		Contaminant	mg/kg	mg/Kg	Ratio (2)	
FACTOR (I)		Manganese and compounds	471 0	380 0	1 240	
CHF)		Arsenic (cancer endpoint)	8.5	22 0	0 390	(Place an "X" next to one below)
		Lead	67.9	400 0	0 170	(Trace all X liext to one below)
		Aluminum	9,530 0	77,000 0	0 120	Significant (If Total > 100):
		Cobalt	13 9	380 0	0 040	Significant (II Total > 100):
		Vanadium	18 1	540 0	0 030	Moderate (If Total 2 - 100):
		Calcium	7410	23,000 0	0 030	Moderate (11 10(x) 2 - 100):
		Benzo[a]pyrene	011	61	0 020	Minimal (ICT-4-1 - 2)
		Nickel and compounds	18 7	1,500 0	0 010	Minimal (If Total < 2):
		Copper and compounds	25 8	2,800 0		
		Copper and compounds	238	2,800 0	0 010	
		(1) Evaluate for human contaminants only		Total:	2.083	
		(2) Ratio = Maximum Concentration/Stand Note Only top ten contaminants are display		<u></u>		1
	Potential - Brief Rational	Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Confine for Selection Information not sufficient to	sufficient ned			Potential: X Confined:
ECEPTOR , ACTOR RF)	Identified -	Receptors identified that have access to contaminated soil	. Limited -	Little or no potential for receptors to contaminated soil	have access to	(Place an "X" next to one below)
•	Potential -	Potential for receptors to have access to contaminated soil				Potential: X Limited:
	Brief Rationale	for Selection — Potential for human recentors	s if future use scenerio assumes industrial	l/residential		
	isher mationale	Total defection Total name receptors	s ir ruture use scenerio assumes ingustriai	i/residential	•	
· · · · · · · · · · · · · · · · · · ·						
tivity Name	NEWPORT RI	NETC	Site Name: SITE 00012		Soil Category: (High, Medium, Low)	_Med

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 11/25/97
Location (State): RI	
Site (Name/RMIS ID) / Project for FUDS: SITE 00013	
RMIS Site Type: UNDERGROUND TANK FARM	Agr. Status (V/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes
Point of Contact (Name/Phone): Brad Wheeler	National Date to 12 a CV/DD
	National Priority List (Y/N): No Site Rank: Med
	SITE SUMMARY
(Include only key elements of information use	ed to conduct the relative risk site evaluation Attach map view of site if desired)
Brief Site Description (Include site type, materials disposed of, dates of operation, Site 13 is a 73 acre tank farm which consists of 11 underground storage tanks each wiffrom World War II until the mid 1970's and was used to store diesel and fuel oil Soil was high from the collected sample Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Potential pathways consist of groundwater and soil	th a 2.5M gallon capacity. The tank form was approximate
Brief Description of Receptors (Human and Ecological): Potential receptors include human	

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req (or RFA) phase that has not been entered into RMIS. For the FUDS Program. "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

			G	round Water			
CONTAMINA HAZARD	INT	Contaminant	Maximum Conc	c.	Standard ug/L	Ratio (2)	
FACTOR (1)		Arsenic (cancer)	95 3		4.5	21 180	
(СНГ)		Chromium VI and compounds	3,760 0		180 0	20 890	(D) H3(N)
		Antimony and compounds	30 9		15 0	2 060	(Place an "X" next to one below)
						2 000	Significant (If Total > 100):
							Moderate (If Total 2 - 100):
							Minimal (If Total < 2):
							19111111111 10181 × 2];
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Stan	ndard		Total:	44.099	
MIGRATION	Evident -	Note Only top ten contaminants are displa					
ATHWAY ACTOR MPF)	esiaeni -	Analytical data or observable evidence indicontamination in the media is moving away	cates that y from the source	Confined - Informatio contaminal geological	on indicates that the potent int migration from the si structures or physical c	source is limited (due to	(Place an "X" next to one below)
•	Potential -	Possibility for contamination to be present a to a point of exposure, or information is not to make a determination of Evident or Conf	t sufficient				Potential: X Confined:
	Brief Rationale	e for Selection Information is not sufficien	t to make a determination of Ev	ivident Confined			Continued
ECEPTOR	Identified -	There is a threatened or potentially threatened	ed water supply	Limited - There is no	potentially threatened	water supply well downgradient of	(Place an "X" next to one below)
ACTOR F)		downgradient of the source The GW (cont drinking water source or is equiv to (Class I	or not) is a current	the source	The groundwater is not	of considered a potential source of (IIIA, IIIB or perched aquifer)	Identified:
	Potential -	There is no potentially threatened water support the source. The group during the source of the sour	ply well downgradient			, , , , , , , , , , , , , , , , , , , ,	Potential: X
		of the source The groundwater is potentially irrigation or agriculture, but not presently use	ed (Class HB aquifer)				Limited:
	Brief Rationale is potentially us	for Selection There is not threatened water sable for drinking water	r supply well down gradient of	the source and the grour	ndwater - '		
ч							
livity Name	NEWPORT RI	NETC	Site Name: SITE	00013		Groundwater Category: (High, Medium, Low)	Med

			So	oil .		
						•
ONTAMINA	NT		Maximum Conc.			
JAZARD		Contaminant	mg/Kg	Standard	D . (2)	
ACTOR (1)		Lead	205 0	mg/kg 400 0	Ratio (2)	
CHF)		Arsenic (cancer endpoint)	10.1	22 0	0.510	
		Antimony and compounds	5.4	310	0 460 0 170	(Place an "X" next to one below)
		Aluminum	9 550 0	77 000 0		
		Cobalt	15 1	380 0	0 120 0 040	Significant (If Total > 100):
		Calcium	854 0	23,000 0	0 040	
		Benzo[a]pyrene	0 14	61	0 020	Moderate (If Total 2 - 100):
		Nickel and compounds	21 0	1,500 0		
		Mercury and compounds (inorganic)	0 32	23 0	0 010	Minimal (If Total < 2):
		Copper and compounds	24 3	2,800 0	0 010	
			_1	2,800 0	0 010	
		(1) Evaluate for human contaminants only		Total:	1.400	
		(2) Ratio = Maximum Concentration/Standar	đ	Total,	1.400	
		Note Only top ten contaminants are displayed				
THWAY CTOR PF)		contamination is present at its moving towards moved to a point of exposure	s, or has	ined - Low possibility for contamination to or migrate to a point of exposure	F	(Place an "X" next to one below) Evident:
	Potential -	Possibility for contamination to be present at or to a point of exposure, or information is not su to make a determination of Evident or Confine	Micrent			Potential: X
	Brief Rational	e for Selection Information not sufficient to m		confined		Confined:
				commed		•
CEPTOR	Identified -	Receptors identified that have access to		ited - Little or no potential for receptors to		(Place an "X" next to one below)
CTOR F)	rocumes -	contaminated soil	Identified:			
	Potential -	Potential for receptors to have access to				Potential: X
		contaminated soil				Limited:
	Brief Rationale	e for Selection Potential for human receptors if	future use scenerio assumes indu	istrial/residential		
				,	•	
					<u>'</u>	
		•				
ivity Name	NEWPORT RI	NETC	Site Name: SITE 00013	3	Soil Category:	Low

,

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year)	: 11/26/97			
Location (State): RI	Media Evaluated (GW, SW, Sedin	nent, Soil): GW	SEDEM		
Site (Name/RMIS ID) / Project for FUDS: SITE 00017	Phase of Exec. (SI, RI, FS, Remy,		CRA Stage):		
RMIS Site Type: PLATING SHOP	Agr. Status (Y/N, If yes, type of ag				 -
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N):	No	Site Rank:	Low	
	SITE SUMMARY				
(Include only key elements of information used	d to conduct the relative risk site evalua	tion Attach map vie	ew of site if desired)		
Brief Site Description (Include site type, materials disposed of, dates of operation, Site 17 is a 4,275 SQ FT electroplating shop located on Gould Island. The Plating Shos shop included numerous metal vats, 3 trench drains and discrete floor drains. Disposal discharges were to either a septic system or off-shore outfall pipes. Sediment data is tal and is dated 5/15/86. Cyanide in the sediment media which is above background levels in the Lookup Tables at this time. Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Potential pathways are sediments. Brief Description of Receptors (Human and Ecological): Potential receptor is ecological.	op was used during the 1940's for torped Llocation of wastes are unknown How ken from Loureido Engineering Associ	ever, wastewater			

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req (or RFA) phase that has not been entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

 CONTAMINANT			und Water		
HAZARD FACTOR (1) (CHF)	Contaminant Trichloroethylene (TCE) (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standa Note Only top ten contaminants are displayed	Maximum Conc. ug/l, 90	Standard ug/L 160 0	Ratio (2) '0 060	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION Evident - PATHWAY FACTOR (MPF) Potential -	Analytical data or observable evidence indica contamination in the media is moving away for Possibility for contamination to be present at to a point of exposure, or information is not stomake a determination of Evident or Confine	ates that Co from the source or migrate sufficient	Confined - Information indicates that the pa contaminant migration from the geological structures or physical úsed for drinking water	e source is limited (due to	(Place an "X" next to one below) Evident: Potential: Confined: X
RECEPTOR Identified - ACTOR RF) Potential -	There is a threatened or potentially threatened downgradient of the source. The GW (cont or drinking water source or is equivated to (Class I or There is no potentially threatened water supply of the source. The groundwater is potentially threatened or agriculture, but not presently used	or not) is a current or IIA aquifer) v well downgradient usable for DW.	.imited - There is no potentially threatener the source The groundwater is r DW or is of limited benificial use	not considered a potential source of	(Place an "X" next to one below) Identified: Potential: Limited: X

			Sedi	iment Eco Marine			
CONTAMINA HAZARD FACTOR (I) (CHF)		Contaminant Copper and compounds Cyanide (free) (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Stand Note Only top ten contaminants are display	idard		ndard ig/Kg 7 0 0 0 Total:	Ratio (2) 1 100 0 000	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION PATHWAY FACTOR (MPF)	Potential -	Analytical data or observable evidence indicontamination in the media is present at, is toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure or information is not to make a determination of Evident or Confidence of the c	moving ce at or migrate it sufficient fined	of geological stru	licates a low potentia of exposure (could b ructures or or physic	be due to the presence	(Place an "X" next to one below) Evident: Potential: X Confined:
RECEPTOR FACTOR RF)	ldentified -	Receptors identified that have access to sedi	ment	Limited - Little or no poten	itial for receptors to	a have access to sediment	(Place an "X" next to one below)
•	Potential -	Potential for receptors to have access to sedii	ment				Potential: X Limited:
	Brief Rationale as moved or can		tors to have access to the sed	diment to which contamination h	1-		
activity Name	e <u>NEWPORT RI N</u>	NETC	Site Name: <u>SITI</u>	FIE 00017	Sedi	iment Marine Category: (High, Medium, Low)	Low

,

Installation/Site Name for FUDS NEWPORT RI NETC	Date Entered (Day, Month, Year): 11/26/97
Location (State): RI	Media Evaluated (GW, SW, Sediment, Soil): GW SEDEM SOIL
Site (Name/RMIS ID) / Project for FUDS: SITE 00019	Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage): CERCLA`RI/\GammaS
RMIS Site Type: MAINTENANCE YARD	Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes
Point of Contact (Name/Phone): Brad Wheeler	National Priority List (Y/N): No Site Rank: High
	Sile Rank: Tilgh
	SITE SUMMARY
(Include only key elements of information use	ed to conduct the relative risk site evaluation. Attach map view of site if desired)
Brief Site Description (Include site type, materials disposed of, dates of operation, Site 19 was leased from the Navy for a shipbuilding facility. The facility functioned as facility for private and military ships from 1979 to 1992. Large quantities of lubricating and were probably released into the soils and adjacent bay due to poor waste management abandoned the site in 1992.	s a heavily industrialized repair, maintenance and construction
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Suspected pathways include sediments, surface water and soil	
Brief Description of Receptors (Human and Ecological): Potential receptors include ecological and human (ingestion of shellfish)	
•	

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req. A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination.

				Ground Wa	ter	· · · · · · · · · · · · · · · · · · ·	
CONTAMINA HAZARD	NT	Contominant	Maximum Co	onc.	Standard	T	
FACTOR (1)		Contaminant Vinyl chloride	ug/L,		ug/l,	Ratio (2)	
(CHF)		Arsenic (cancer)	100 0		2 0	50 000	
(0,		Chromium VI and compounds	57.6		4.5	12 800	(Place an "X" next to one below)
		1,2-Dichloroethylene (cis)	57 6		180 0	0 320	,
		Trichloroethylene (TCE)	13.0		610	0 210	Significant (If Total > 100):
		Trichioroethylene (TCL)	32 5		160 0	0 200	
							Moderate (If Total 2 - 100):
							Minimal (If Total < 2);
			 				
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standar Note Only top ten contaminants are displayed	rd		Total:	63.533	
HGRATION ATHWAY ACTOR MPF)	Evident - Potential - Brief Rational	Analytical data or observable evidence indicate contamination in the media is moving away from the present at orm to a point of exposure, or information is not sure to make a determination of Evident or Confine for Selection.	om the source or migrate ` officient		- Information indicates that the pa contaminant migration from the geological structures or physical	source is limited (due to	(Place an "X" next to one below) Evident: Potential: X Confined:
ECEPTOR ACTOR F)	ldentified -	There is a threatened or potentially threatened downgradient of the source The GW (cont or drinking water source or is equiv to (Class I or	not) is a current		There is no potentially threatened the source The groundwater is n DW or is of limited benificial use	d water supply well downgradient of tot considered a potential source of total (IIIA, IIIB or perched aguifer)	(Place an "X" next to one below) Identified:
٠	Potential -	There is no potentially threatened water supply of the source. The groundwater is potentially user in agriculture, but not presently used in the source of t	sable for DW.	•		, , , , , , , , , , , , , , , , , , ,	Potential: Limited: X
	Brief Rationale	for Selection The site is within an area of cur	rent groundwater designa	ation of GB			
tivity Name	NEWPORT RI	NETC	Site Name: SI	TE 00019		Groundwater Category:	Low

,

			Sedime	ent Eco Marine		
CONTAMINAN HAZARD FACTOR (1) (CHF)	NT	Contaminant PCBs Mercury Lead (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standar	Maximum Conc mg/kg 27 5 1 08 192 6	mg/Kg 0 0 0 5 0 1 5 3 5 0	Ratio (2) 550 000 7 200 5 500 5 500	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION PATHWAY FACTOR (MPF)	Exident - Potential - Brief Rationale	Analytical data or observable evidence indica contamination in the media is present at, is me toward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure, or information is not su to make a determination of Evident or Confine e for Selection Analytical data shows elevated	ates that (loving or migrate ufficient led	Confined - Information indicates a low potential point of exposure of geological structures or o	(Place an "X" next to one below) Evident: X Potential: Confined:	
RECEPTOR FACTOR RF)	Identified -	Receptors identified that have access to sedime	ent	Limited - Little or no potential for reco	(Place an "X" next to one below) Identified: X	
	Potential -	Potential for receptors to have access to sedime	ent			Potential: Limited:
	Brief Rationale	for Selection Ecological and human receptor	s have been identified			
ctivity Name 1	NEWPORT RIT	NETC	Site Name: SITE 0)0019	Sediment Marine Category: [(High, Medium, Low)	

			Soil			,
						•
CONTAMINAN IAZARD FACTOR (1)	T	Contaminant Benzo[a]pyrene	Maximum Conc. nig/Kg	Standard mg/Kg	Ratio (2)	
(CIIF)		PCB 1016	3,900 0	61	639 340	· ·
,		Arsenic (noncancer)	65 8	4 9	13 430	(Place an "X" next to one below)
		Attachic (holicancer)	24 0	22 0	1 090	
						Significant (If Total > 100):
						Moderate (If Total 2 - 100):
						Minimal (If Total < 2):
		(1) Evaluate for human contaminants only				
		(2) Ratio = Maximum Concentration/Standa	ard	Total:	653.860	
		Note Only top ten contaminants are display-	ed	<u>L</u>		•
	Potential - Brief Rationale	Possibility for contamination to be present at to a point of exposure, or information is not s to make a determination of Evident or Confire . For Selection Analytical data shows contamination of the present at the present and the present at the	ufficient ied	urface coule		Potential: . Confined:
			, was a see see see see see see	,		
CEPTOR (CTOR)	Identified -	Receptors identified that have access to contaminated soil	(Place an "X" next to one below) Identified: X			
	Potential -	Potential for receptors to have access to				Potential:
		contaminated soil				Limited:
	Brief Rationale oils	for Selection Due to use at site for industrial	purposes. Human receptors have exposur	re to contaminated -		Limiteo:
ivity Name <u>N</u>	EWPORT RI I	NETC	Site Name: SITE 00019		Soil Category:	High